Economics and Business Information
 Formulae

Descriptive Statistics

Frequency tables

Suppose the values observed for a given variable X for statistical units $i(i=1, \ldots, n)$ are represented by：$X_{1}, X_{2}, X_{3}, \ldots, X_{n}$
a．Discrete（ungrouped）data：
－Absolute frequency $\left(F_{j}\right)$－Number of times each value of variable X is observed $(j=1,2, \ldots k)$ ．
－Cumulative absolute frequency－cum $F_{j}=\sum_{j} F_{j}=N$
－Relative frequency $\left(f_{j}\right)$－Proportion of times each value of the variable X is observed：$f_{j}=F_{j} / N$
－Cumulative relative frequency $\operatorname{cum} f_{j}=\sum_{j} f_{j}=\sum_{j} \frac{F_{j}}{N}=1$
b．Grouped data：
－$\quad j$ denominates class $\mathrm{j}^{\text {th }}$ ，with $\mathrm{j}=1,2,3 \ldots, \mathrm{~m}$
－Class width：$a_{j}=I_{j}-I_{j-1}$
－Class midpoint： $\mathrm{MP}_{\mathrm{j}}=\left(\mathrm{I}_{\mathrm{j}}+\mathrm{I}_{\mathrm{j}-1}\right) / 2$ or $\mathrm{MP}_{\mathrm{j}}=\mathrm{I}_{\mathrm{j}-1}+\left(\mathrm{l}_{\mathrm{j}}-\mathrm{I}_{\mathrm{j}-1}\right) / 2$
－Frequency density：$h_{j}=F_{j} / a_{j}$ or $h_{j}=f_{j} / a_{j}$

Measures of location

Arithmetic mean：

Discrete data	$\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$		
Grouped continuous data	$\bar{x}=\frac{1}{n} \sum_{j=1}^{m} F_{j} x_{j}=\sum_{j=1}^{m} f_{j} x_{j}$		
Median：	$\bar{x}=\frac{1}{n} \sum_{j=1}^{m} F_{j} M P_{j}=\sum_{j=1}^{m} f_{j} M P_{j}$	\quad	Uneven number of observations：$x_{M e}=x_{\frac{n+1}{2}}^{2}$
:---			
Discrete data			
Even number of observations：$x_{M e}=\frac{x_{\frac{n}{2}}+x_{\frac{n}{2}+1}^{2}}{2}$			
Grouped continuous data			

	- cum $f(M e-1)$: cumulative frequency of the class before the median class - $\quad f(M e)$: relative frequency of the median class - $\quad a(M e)$: width of the median class
Mode:	
Grouped continuous data	$x_{M o}=l_{j-1}(M o)+\frac{f(M o+1)}{f(M o-1)+f(M o+1)} a(M o)$
Quantiles: $\mathrm{Q}_{1}, \mathrm{Q}_{\mathbf{3}}$	
Grouped continuous data	$x_{Q_{1}}=l_{j-1}\left(Q_{1}\right)+\frac{0.25-\operatorname{cum} f\left(Q_{1}-1\right)}{f\left(Q_{1}\right)} a\left(Q_{1}\right)$ $x_{Q_{3}}=l_{j-1}\left(Q_{3}\right)+\frac{0.75-\operatorname{cum} f\left(Q_{3}-1\right)}{f\left(Q_{3}\right)} a\left(Q_{3}\right)$

Measures of dispersion

Interquartile range:	$\mathrm{IRQ}=\mathrm{Q}_{3}-Q_{1}$
Mean deviation:	$M D_{x}=\frac{\sum_{i=1}^{n}\left\|x_{i}-\bar{x}\right\|}{n}$
Discrete data	$M D_{x}=\frac{\sum_{j=1}^{m} n_{j}\left\|M P_{j}-\bar{x}\right\|}{n}=\sum_{j=1}^{m} f_{j}\left\|M P_{j}-\bar{x}\right\|$
Grouped continuous data	$S_{x}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}$
Standard deviation:	$S_{x}=\sqrt{\frac{\sum_{j=1}^{m} n_{j}\left(M P_{j}-\bar{x}\right)^{2}}{n}}=\sqrt{\sum_{j=1}^{m} f_{j}\left(M P_{j}-\bar{x}\right)^{2}}$
Discrete data	
Grouped continuous data	$S_{x}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}$
Variance:	$S_{x}^{2}=\frac{\sum_{j=1}^{m} n_{j}\left(M P_{j}-\bar{x}\right)^{2}}{n}=\sum_{j=1}^{m} f_{j}\left(M P_{j}-\bar{x}\right)^{2}$
Discrete data	$R I Q R=\frac{I Q R}{Q_{2}}=\frac{Q_{3}-Q_{1}}{Q_{2}}=\frac{Q_{3}-Q_{1}}{x_{M E}}$
Grouped continuous data	$C V_{x}=\frac{S_{x}}{\bar{x}}$
Relative interquartile range:	

Measures of concentration

Gini Index	$G I=\frac{\sum_{j=1}^{m-1}\left(\operatorname{cumf}_{j}(x)-\operatorname{cum} f_{j}(y)\right)}{\sum_{j=1}^{m-1} \operatorname{cum} f_{j}(x)}=\frac{\sum_{j=1}^{m-1}\left(p_{j}-q_{j}\right)}{\sum_{j=1}^{m-1} p_{j}}=1-\frac{\sum_{j=1}^{m-1} q_{j}}{\sum_{j=1}^{m-1} p_{j}}$

Symmetry / Asymmetry of the distribution

- mean=median=mode: symmetrical distribution
- mean>median>mode: positive asymmetry - skewed to the left
- mode>median>mean: negative asymmetry - skewed to the right

Rates of change and indices

Absolute change	$\Delta X_{t+k, t}=X_{t+k}-X_{t}, \quad$ with $k=1,2, \ldots$ (time periods)
Mean absolute change	$m \Delta X_{t+k, t}=\frac{X_{t+k}-X_{t}}{k}, \quad$ with $k=1,2, \ldots$ (time periods)
Relative change - rate of change or rate of growth	$r_{t+k, t}=\frac{X_{t+k}-X_{t}}{X_{t}}=\frac{\Delta X_{t+k, t}}{X_{t}}=\frac{X_{t+k}}{X_{t}}-1$
Average relative change or rate of change	$\begin{aligned} m r_{t+k, t} & =\left(\frac{X_{t+k}}{X_{t}}\right)^{\frac{1}{k}}-1 \\ & =\left(1+r_{t+k, t}\right)^{\frac{1}{k}}-1 \\ & =\left[\left(1+r_{t+1, t}\right)\left(1+r_{t+2, t+1}\right) \ldots\left(1+r_{t+k, t+k-1}\right)\right]^{\frac{1}{k}}-1 \end{aligned}$
Year-on-year rate of change	$h_{t, s}=\frac{x_{t, s}-x_{t-1, s}}{x_{t-1, s}}, \quad$ with t the year and s the period

Simple Indices

Consider a time series for variable X between years 0 and $t, X_{1}, X_{2}, X_{3}, \ldots, X_{t}$:

Chain index	$i_{1,0}=\frac{X_{1}}{X_{0}}, i_{2,1}=\frac{X_{2}}{X_{1}}, i_{3,2}=\frac{X_{3}}{X_{2}} \ldots, i_{t, t-1}=\frac{X_{t}}{X_{t-1}}$
Fixed base index	$i_{1,0}=\frac{X_{1}}{X_{0}}, i_{2,0}=\frac{X_{2}}{X_{0}}, i_{3,0}=\frac{X_{3}}{X_{0}} \ldots, i_{t, 0}=\frac{X_{t}}{X_{0}}$
Relationship between indices and rates of change	Chain index: $i_{t, t-1}=\left(1+r_{t, t-1}\right)$ Fixed base index: $i_{t, 0}=\left(1+r_{t, 0}\right)$

Circularity	$i_{t, 0}=i_{t, t-1} * \ldots * i_{3,2} * i_{2,1} * i_{1,0}$
Rebasing	$i_{t, b}=\frac{i_{t, 0}}{i_{b, 0}}$ because $\frac{\frac{x_{t}}{x_{0}}}{\frac{x_{b}}{x_{0}}}=\frac{x_{t}}{x_{b}}$
Reversibility	$i_{t, 0}=\frac{1}{i_{0, t}}$ because $\frac{x_{t}}{x_{0}}=\frac{1}{\frac{x_{0}}{x_{t}}}$

Composite or aggregate indices

Index of value	Value Index $=$ Price Index*Quantity Index $I_{\text {value }}=\frac{\sum p_{t, q_{t}}}{\sum p_{o \cdot} \cdot q_{o}}=I_{\text {prices }} * I_{\text {quantity }}=L_{t, 0}^{P} * P_{t, 0}^{Q}=P_{t, 0}^{P} * L_{t, 0}^{Q}$
Laspeyres Price Index	Laspeyres Quantity Index
$L_{t, 0}^{P}=\frac{\sum_{j=1}^{m} p_{t}^{j} \cdot q_{0}^{j}}{\sum_{j=1}^{m} p_{0}^{j} \cdot q_{0}^{j}}$	$L_{t, 0}^{Q}=\frac{\sum_{j=1}^{m} p_{0}^{j} \cdot q_{t}^{j}}{\sum_{j=1}^{m} p_{0}^{j} \cdot q_{0}^{j}}$

Laspeyres indices as the weighted average of simple indices
$L_{t, 0}^{P}=\sum_{j=1}^{m} w_{0}^{j} \frac{p_{t}^{j}}{p_{0}^{j}}$,
$L_{t, 0}^{Q}=\sum_{j=1}^{m} w_{0}^{j} \frac{q_{t}^{j}}{q_{0}^{j}}$,
with $w_{0}^{j}=\frac{p_{0}^{j} \cdot q_{0}^{j}}{\sum_{j=1}^{m} p_{0}^{j} \cdot q_{0}^{j}}$

Paasche Price Index

$P_{t, 0}^{P}=\frac{\sum_{j=1}^{m} p_{t}^{j} \cdot q_{t}^{j}}{\sum_{j=1}^{m} p_{0}^{j} \cdot q_{t}^{j}}$

Paasche Quantity Index
$P_{t, 0}^{Q}=\frac{\sum_{j=1}^{m} p_{t}^{j} \cdot q_{t}^{j}}{\sum_{j=1}^{m} p_{t}^{j} \cdot q_{0}^{j}}$

Association and linear relation between variables

Covariance between \mathbf{X} and \mathbf{Y}	$S_{Y X}=\frac{\sum_{j=1}^{N}\left(x_{j}-\bar{X}\right)\left(y_{j}-\bar{Y}\right)}{n}$
Linear correlation coefficient	
between \mathbf{X} and \mathbf{Y}	

