

Economics and Business Information

Formulae

Descriptive Statistics

Frequency tables

Suppose the values observed for a given variable X for statistical units *i* (i=1,..., n) are represented by: $X_1, X_2, X_3, ..., X_n$

- a. Discrete (ungrouped) data:
- Absolute frequency (F_j) Number of times each value of variable X is observed (j=1,2,...k).
- Cumulative absolute frequency $cum F_i = \sum_i F_i = N$
- Relative frequency (f_j) Proportion of times each value of the variable X is observed: $f_j=F_j/N$
- Cumulative relative frequency $cum f_j = \sum_j f_j = \sum_j \frac{F_j}{N} = 1$

b. Grouped data:

- *j* denominates class jth, with j=1,2,3...,m
- Class width: a_j=l_j l_{j-1}
- Class midpoint: $MP_j = (I_j + I_{j-1})/2$ or $MP_j = I_{j-1} + (I_j I_{j-1})/2$
- Frequency density: $h_j = F_j/a_j$ or $h_j = f_j/a_j$

Arithmetic mean:	
Discrete data	$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$ $\bar{x} = \frac{1}{n} \sum_{j=1}^m F_j x_j = \sum_{j=1}^m f_j x_j$
Grouped continuous data	$\bar{x} = \frac{1}{n} \sum_{j=1}^{m} F_j M P_j = \sum_{j=1}^{m} f_j M P_j$
Median:	
Discrete data	Uneven number of observations: $x_{Me} = x_{\frac{n+1}{2}}$
	Even number of observations: $x_{Me} = \frac{\frac{x_n + x_n}{2} + 1}{2}$
Grouped continuous data	$x_{Me} = l_{j-1}(Me) + \frac{0.5 - cum f(Me - 1)}{f(Me)}a(Me)$ where:
	- <i>I_{j-1} (Me)</i> : lower limit of the median class

Measures of location

Mode:	 <i>cum f(Me-1):</i> cumulative frequency of the class before the median class <i>f(Me)</i>: relative frequency of the median class <i>a(Me)</i>: width of the median class
Grouped continuous data	$x_{Mo} = l_{j-1}(Mo) + \frac{f(Mo+1)}{f(Mo-1) + f(Mo+1)}a(Mo)$
Quantiles: Q_1 , Q_3	
Grouped continuous data	$\begin{aligned} x_{Q_1} &= l_{j-1}(Q_1) + \frac{0.25 - cum f(Q_1 - 1)}{f(Q_1)} a(Q_1) \\ x_{Q_3} &= l_{j-1}(Q_3) + \frac{0.75 - cum f(Q_3 - 1)}{f(Q_3)} a(Q_3) \end{aligned}$

Measures of dispersion

Interquartile range:	$IRQ=Q_3-Q_1$
Mean deviation:	
Discrete data	$MD_x = \frac{\sum_{i=1}^n x_i - \bar{x} }{n}$
Grouped continuous data	$MD_{x} = \frac{\sum_{j=1}^{m} n_{j} MP_{j} - \bar{x} }{n} = \sum_{j=1}^{m} f_{j} MP_{j} - \bar{x} $
Standard deviation:	
Discrete data	$S_x = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}}$
Grouped continuous data	$S_{x} = \sqrt{\frac{\sum_{j=1}^{m} n_{j} (MP_{j} - \bar{x})^{2}}{n}} = \sqrt{\sum_{j=1}^{m} f_{j} (MP_{j} - \bar{x})^{2}}$
Variance:	
Discrete data	$S_x^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$
Grouped continuous data	$S_x^2 = \frac{\sum_{j=1}^m n_j (M \overline{P_j - \bar{x}})^2}{n} = \sum_{j=1}^m f_j (M P_j - \bar{x})^2$
Relative interquartile range:	$RIQR = \frac{IQR}{Q_2} = \frac{\overline{Q_3 - Q_1}}{Q_2} = \frac{Q_3 - Q_1}{x_{ME}}$
Coefficient of variation (CV):	$CV_x = \frac{S_x}{\bar{x}}$

Measures of concentration

Gini Index $GI = \frac{\sum_{j=1}^{m-1} (cunf_j(x) - cunf_j(y))}{\sum_{j=1}^{m-1} cunf_j(x)} = \frac{\sum_{j=1}^{m-1} (p_j - q_j)}{\sum_{j=1}^{m-1} p_j} = 1 - \frac{\sum_{j=1}^{m-1} q_j}{\sum_{j=1}^{m-1} p_j}$
--

Symmetry / Asymmetry of the distribution

- mean=median=mode: symmetrical distribution
- mean>median>mode: positive asymmetry skewed to the left
- mode>median>mean: negative asymmetry skewed to the right

Rates of change and indices

Absolute change	$\Delta X_{t+k,t} = X_{t+k} - X_t, with \ k = 1, \ 2, \ \dots \text{ (time periods)}$
Mean absolute change	$m\Delta X_{t+k,t} = \frac{X_{t+k} - X_t}{k}$, with $k = 1, 2,$ (time periods)
Relative change – rate of change or rate of growth	$r_{t+k,t} = \frac{X_{t+k} - X_t}{X_t} = \frac{\Delta X_{t+k,t}}{X_t} = \frac{X_{t+k}}{X_t} - 1,$
Average relative change or rate of change	$mr_{t+k,t} = \left(\frac{X_{t+k}}{X_t}\right)^{\frac{1}{k}} - 1$ = $\left(1 + r_{t+k,t}\right)^{\frac{1}{k}} - 1$ = $\left[\left(1 + r_{t+1,t}\right)\left(1 + r_{t+2,t+1}\right) \dots \left(1 + r_{t+k,t+k-1}\right)\right]^{\frac{1}{k}} - 1$
Year-on-year rate of change	$h_{t,s} = \frac{x_{t,s} - x_{t-1,s}}{x_{t-1,s}}$, with t the year and s the period

Simple Indices

Consider a time series for variable X between years 0 and t, X₁, X₂, X₃,..., X_t:

Chain index	$i_{1,0} = \frac{X_1}{X_0}, i_{2,1} = \frac{X_2}{X_1}, i_{3,2} = \frac{X_3}{X_2} \dots, i_{t,t-1} = \frac{X_t}{X_{t-1}}$
Fixed base index	$i_{1,0} = \frac{X_1}{X_0}, i_{2,0} = \frac{X_2}{X_0}, i_{3,0} = \frac{X_3}{X_0} \dots, i_{t,0} = \frac{X_t}{X_0}$
Relationship between indices and rates of change	Chain index: $i_{t,t-1} = (1 + r_{t,t-1})$
Descertion of indiana,	Fixed base index: $i_{t,0} = (1 + r_{t,0})$
Properties of indices:	

Circularity	$i_{t,0} = i_{t,t-1} * \dots * i_{3,2} * i_{2,1} * i_{1,0}$
Rebasing	$i_{t,b} = \frac{i_{t,0}}{i_{b,0}} because \frac{\frac{x_t}{x_0}}{\frac{x_b}{x_0}} = \frac{x_t}{x_b}$
Reversibility	$i_{t,0} = \frac{1}{i_{0,t}} because \ \frac{x_t}{x_0} = \frac{1}{\frac{x_0}{x_t}}$

Composite or aggregate indices

	Value Index = Price Index*Quantity Index
Index of value	$I_{value} = \frac{\sum p_{t,q_t}}{\sum p_o q_o} = I_{prices} * I_{quantity} = L_{t,0}^P * P_{t,0}^Q = P_{t,0}^P * L_{t,0}^Q$
Laspeyres Price Index	Laspeyres Quantity Index
$L_{t_{0}}^{P} = \frac{\sum_{j=1}^{m} p_{t}^{j} \cdot q_{0}^{j}}{\sum_{j=1}^{m} p_{t}^{j} \cdot q_{0}^{j}}$	$L_{t=0}^{Q} = \frac{\sum_{j=1}^{m} p_{0}^{j} \cdot q_{t}^{j}}{\sum_{j=1}^{m} p_{0}^{j} \cdot q_{t}^{j}}$
$\sum_{j=1}^{m} p_0^j \cdot q_0^j$	$\sum_{j=1}^{m} p_0^j, q_0^j$
Laspeyres indices as the weighted average of simple indices	
$L_{t,0}^{P} = \sum_{j=1}^{m} w_{0}^{j} \frac{p_{t}^{j}}{p_{t}^{j}}, \qquad L_{t,0}^{Q} =$	$\sum_{j=1}^{m} w_0^j \frac{q_t^j}{a_j^j}, \text{with } w_0^j = \frac{p_0^j, q_0^j}{\sum_{k=1}^{m} p_0^j, a_j^j}$
$\gamma - \gamma_0$	$y = y_0$ $z_{j=1}y_0, y_0$
Paasche Price Index	Paasche Quantity Index
$P_{P_{i}}^{P} = \frac{\sum_{j=1}^{m} p_{t}^{j} \cdot q_{t}^{j}}{\sum_{j=1}^{m} p_{t}^{j} \cdot q_{t}^{j}}$	$P^{Q} = \frac{\sum_{j=1}^{m} p_t^{j} \cdot q_t^{j}}{\sum_{j=1}^{m} p_t^{j} \cdot q_t^{j}}$
$\sum_{j=1}^{m} p_0^j q_t^j$	$\sum_{j=1}^{r} p_t^{j} \cdot q_0^{j}$

Association and linear relation between variables

Covariance between X and Y	$S_{YX} = \frac{\sum_{j=1}^{N} (x_j - \overline{X})(y_j - \overline{Y})}{n}$
Linear correlation coefficient between X and Y	$r_{YX} = \frac{S_{YX}}{S_X S_Y} = \frac{\frac{1}{n} \sum_{j=1}^n (x_j - \bar{x}) (y_j - \bar{y})}{\sqrt{\frac{1}{n} \sum_{j=1}^n (x_j - \bar{x})^2 \frac{1}{n} \sum_{j=1}^n (y_j - \bar{y})^2}}$
Regression line	$Y_i=b_0+b_1X_i+\varepsilon_i$
Regression parameters	$b_0 = \overline{Y} - b_1 \overline{X}$ $b_1 = \frac{S_{YX}}{S_X^2}$